Latest Posts:

Mostrando las entradas con la etiqueta astronomia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta astronomia. Mostrar todas las entradas

15 de octubre de 2022

Marte podría haber estado lleno de vida hasta que cambio climático causó su desaparición

Al principio de su historia, el planeta rojo habría sido probablemente habitable para los metanógenos, microbios que viven en hábitats extremos de la Tierra.

El Marte noáquino habría sido un hábitat adecuado para los hidrogenotrofos metanogénicos. Representación artística del gran cañón marciano Valles Marineris.

El Marte primitivo pudo haber proporcionado en el subsuelo un entorno favorable para la vida microbiana que se alimenta de hidrógeno y produce metano, señala un estudio basado en modelos que publica este lunes (10.10.2022) Nature Astronomy.

La investigación encabezada por Boris Sauterey de la Universidad de Arizona se remonta al periodo noáquico, hace más 3.700 millones de años.

Evaluación probabilística de la habitabilidad de Marte

Hasta ahora, las pruebas sugieren que el planeta rojo albergó –al menos durante parte de su historia– condiciones potencialmente favorables para el desarrollo de la vida, sin embargo, la ciencia ha tratado de establecer en pocas ocasiones cuantitativamente la probabilidad de tal escenario.

El equipo presenta una evaluación probabilística de la habitabilidad de Marte para los metanógenos basados en el H2 y cuantifica su retroalimentación biológica sobre la atmósfera y el clima de Marte. 

El resultado es que la habitabilidad subsuperficial era "muy probable", y estaba limitada principalmente por la extensión de la cobertura de hielo en la superficie.

Corteza marciana era un lugar viable para este ecosistema

El equipo modeló la interacción entre el entorno primitivo de Marte y un ecosistema de hidrogenotrofos metanogénicos (microorganismos que sobreviven consumiendo hidrógeno y produciendo metano), los cuales se consideran entre las primeras formas de vida en la Tierra. 

En Marte, el regolito poroso saturado de salmuera habría creado un espacio físico protegido de la radiación ultravioleta y cósmica y proporcionado un disolvente, indican los autores en el estudio.

El artículo completo en DW

 

 

Supergigante Betelgeuse tuvo una erupción masiva nunca antes vista

La astrofísica del Centro de Astrofísica Harvard & Smithsonian en Cambridge, detalló que se trata de un fenómeno completamente nuevo ya que “estamos observando la evolución estelar en tiempo real". 


La supergigante roja Betelgeuse, una estrella colosal en la constelación de Orión, experimentó una erupción estelar enorme, como nunca antes se había visto, según los astrónomos.

Betelgeuse llamó la atención por primera vez a finales de 2019 cuando la estrella, que brilla como una gema roja en el hombro superior derecho de Orión, experimentó un oscurecimiento inesperado. La supergigante siguió oscureciéndose en 2020.

Algunos científicos especularon que la estrella explotaría como una supernova, y desde entonces han tratado de determinar qué fue lo que sucedió.

Ahora, los astrónomos han analizado los datos del telescopio espacial Hubble y otros observatorios, y creen que la estrella experimentó una titánica eyección de masa superficial, perdiendo una parte sustancial de su superficie visible.

Fuente: CNN

 

28 de enero de 2020

Nuestro sistema solar tuvo tres planetas habitables

Un hecho fascinante es que nuestro sistema solar quizás tuvo en sus orígenes no uno, sino tres mundos habitables al mismo tiempo. Claro está, hablamos de Venus, la Tierra y Marte, que, no solo estaban en la zona habitable del Sol, sino que probablemente tenían agua líquida en su superficie y que, por tanto, satisfacían el laxo criterio de habitabilidad de los astrónomos (recordemos que el que un planeta sea «habitable» no implica necesariamente que esté «habitado»). Hoy en día, de los tres solamente queda uno que siga siendo habitable, nuestro planeta. La incógnita es cuándo dejaron de ser habitables Venus y Marte y, por supuesto, si estuvieron alguna vez habitados.
¿Tuvieron Venus y Marte océanos durante el comienzo del sistema solar? (NASA).
La habitabilidad del sistema solar interior depende de dos factores: el comportamiento del Sol y el tamaño y composición de los propios planetas. Desde que el sistema solar se formó hace unos 4600 millones de años, el Sol ha visto aumentar su luminosidad en un 30%. Este hecho ha provocado que el límite interior de la zona habitable se haya ido desplazando progresivamente hacia el exterior, lo que ha dejado fuera a Venus y ha colocado a la Tierra cerca del borde interno. De hecho, el Sol seguirá aumentando su luminosidad y, en unos mil millones de años, la Tierra quedará fuera de la zona habitable y los océanos se evaporarán para siempre. Curiosamente, aunque el Sol primitivo era menos luminoso, sabemos que Marte fue habitable durante cientos de millones de años, como mínimo. Es lo que se conoce como la «paradoja del Sol joven», y que también es un problema a la hora de explicar las condiciones de la Tierra primitiva.

Zona habitable de las estrellas en función de su temperatura superficial. En la actualidad solo la Tierra y Marte están dentro de la zona habitable (Chester Harman/NASA).
Si Venus dejó de ser habitable principalmente por culpa del comportamiento del Sol, en cambio Marte ya no lo es por sus particularidades como planeta. Marte siempre fue el menor de los tres planetas potencialmente habitables del sistema solar debido a la acción gravitatoria de Júpiter, cuyas migraciones hacia el interior del sistema provocaron que el planeta rojo tuviese una masa menor de la que le correspondía. Con un tamaño más pequeño, el calor interno y, por tanto, su actividad interna siempre fue menor que la de la Tierra o Venus. Esto provocó que los volcanes marcianos no fuesen capaces de aportar suficientes volátiles para compensar la pérdida de la atmósfera provocada por una menor gravedad. El menor tamaño también fue el causante de que Marte no retuviese una dinamo interna que crease una magnetosfera potente para proteger la atmósfera del viento solar. Precisamente, aunque el Sol primigenio era más débil, la emisión de partículas de viento solar y la actividad en rayos X y en el ultravioleta era mayor que la actual, lo que aceleró el proceso de pérdida atmosférica de Marte.
Interacción entre el viento solar y Marte. Sin una magnetosfera potente, Marte ha perdido y sigue perdiendo su atmósfera por culpa del viento solar (NASA).
Hasta hace unos años existía un acalorado debate sobre si la mayor parte de la atmósfera marciana se había perdido al espacio o, si por el contrario, quedó almacenada en el suelo forma de depósitos de carbonatos, hielo de agua y hielo de dióxido de carbono. Ahora, gracias sobre todo a la misión MAVEN de la NASA, tenemos la total seguridad de que Marte perdió la mayor parte de su atmósfera por acción del viento solar. En la actualidad, la atmósfera de Marte es tremendamente tenue, de tan solo 6 milibares de presión y está formada exclusivamente por dióxido de carbono. Si se sublimasen los depósitos de hielo de dióxido de carbono que se hallan en los polos marcianos solo lograríamos aumentar la presión hasta los 50 milibares (malas noticias para los futuros ingenieros planetarios que quieran terraformar el planeta). 

Lea el artículo completo en: Eureka
 

26 de diciembre de 2019

El museo en el que puedes tocar todo lo que ves

El astrofísico canadiense Mauricio Bitran dirige uno de los dos museos de ciencia más antiguos del mundo. Él efiende que facilitar el acceso a la ciencia desde los 7 años es clave para la democracia.

Mauricio Bitran dirige un museo cuyo lema es “por favor, toca todo lo que veas”. El Centro de Ciencia de Ontario, en Canadá, fue fundado en 1969 y es uno de los museos de ciencia interactivos más antiguos del mundo. La institución es una especie de Museo del Prado de la ciencia con un presupuesto anual de unos 25 millones de euros.


Donna Strickland era una niña de 10 años cuando visitó el Centro de Ciencia de Ontario y vio por primera vez un láser. La experiencia debió de resultarle impactante, porque aquella niña dedicó su vida a profundizar en esa poderosa tecnología de la luz y acabó recibiendo por ello el Nobel de Física el año pasado. Chris Hadfield también tenía 10 años cuando Neil Armstrong pisó la Luna, y solo tardó unos meses en visitar el mismo museo de Ontario para conocer allí una de las piedras lunares que la misión Apolo 11 había traído de vuelta a la Tierra. Como en el caso de Strickland, el niño se quedó tan impresionado que se hizo ingeniero, piloto de caza y el primer astronauta canadiense que dio un paseo espacial; también se hizo músico, aunque eso seguramente no es imputable al Centro de Ciencia de Ontario.

Mauricio Britain, astrofísico chileno-canadiense, lo logró.

Pregunta. ¿Los políticos y los científicos viven de espaldas?
Respuesta. Más bien es nuestra tendencia a analizar y dividir la que ha separado las humanidades de la ciencia, no es culpa de los políticos. O eliges ciencia y te especializas en eso y tienes una manera de pensar y de ver el mundo, o te especializas en políticas públicas, en ciencias políticas, humanidades, y tienes otro lenguaje, otra manera de ver las cosas. La mayoría de la gente que hace políticas públicas viene del mundo de las humanidades, no de la ciencia, pero muchos de los problemas que enfrentamos actualmente están basados en la ciencia, como la inteligencia artificial o el cambio climático. Muchos científicos ignoran también cómo se hacen las políticas públicas. Yo he intentado crear un curso, el único que conozco en Canadá, que intenta crear un puente entre estas dos culturas. Darles un lenguaje común para que puedan dialogar.

 P. Usted ha sido asesor del Gobierno de su provincia ¿los políticos hacen caso de sus asesores en este campo?
R. La ciencia es mucho más simple que la política porque hay menos variables. Es necesaria la educación de los científicos para que entiendan la política y cómo se hacen políticas públicas y también al revés, para que los políticos entiendan mejor cómo funciona la ciencia y saber qué preguntas puede responder. Lo que más me preocupa —y esto lo hemos visto en un sondeo reciente que hicimos en el Centro de ciencias de Ontario— es que en general en la población hay una preocupante desconfianza en la ciencia. La población piensa que su opinión es tan buena como cualquier otra. La opinión y los hechos empiezan a tener la misma validez y eso es gravísimo.

P. ¿La forma de hacer política de algunos líderes puede estar agravando este problema?
R. No les echaría a ellos la culpa. Más bien hay una degradación del discurso en la sociedad. Hoy hay menos profundidad y extensión en el análisis. Incluso ahora algunos científicos, en lugar de presentar sus resultados con precaución, lo hacen de una forma sensacionalista para tener más visibilidad. Todo son estudios rompedores y así la gente no sabe qué pensar. Es un problema general de nuestras sociedades.

P. ¿Qué soluciones hay?
R. Educar a la población. Hay que infundir el espíritu crítico a los niños desde pequeños, a los siete u ocho años. Han hecho falta unos 30 años hasta llegar al punto de descrédito de la ciencia actual, ha sido un proceso lento pero continuo. La solución tampoco será a corto plazo. Lo que hacen los museos de ciencia es producir un incentivo, un interés fuera del contexto de la escuela, por eso se les llama centros informales. Los chavales están deslumbrados por jugadores de fútbol, artistas de cine, pero entre los héroes de nuestra sociedad no están los científicos.

P. ¿Cómo se acercan a los chavales jóvenes?
R. Tenemos tres pilares estratégicos. Uno es la innovación juvenil. Tenemos un premio de innovación para chavales de 14 a 18 años [dotado con un primer premio de 10.000 euros]. Uno de los ganadores desarrolló un sistema para medir el pulso, la presión arterial, la saturación de oxígeno en sangre con un dispositivo inalámbrico que se pone en el dedo. Él escribió el programa que hace un cribado para determinar a quién hay que atender primero en una situación de muchos heridos, por ejemplo. Tiene 15 años. Él mismo imprimió en 3D el dispositivo, validó las mediciones, escribió el software... Esto sirve para darle un cauce a los intereses científicos de los jóvenes e incluso ayudar a que sus inventos pasen al sistema de innovación regional.


10 de diciembre de 2019

NASA confirma presencia de agua en luna de Júpiter

Por primera vez, un equipo detectó directamente el vapor de agua lanzado al espacio por los géiseres de la luna Europa, uno de los satélites de Júpiter.

A la izquierda, una vista de Europa tomada desde 2,9 millones de kilómetros el 2 de marzo de 1979 por la nave espacial Voyager 1. A continuación se muestra una imagen en color de Europa tomada por la nave espacial Voyager 2 durante su encuentro cercano el 9 de julio de 1979. A la derecha hay una vista de Europa hecha a partir de imágenes tomadas por la nave espacial Galileo a fines de la década de 1990 (foto de la NASA)
Hace cuarenta años, una nave espacial Voyager tomó las primeras imágenes de primer plano de Europa, una de las 79 lunas de Júpiter. Estos revelaron grietas marrones que cortan la superficie helada de la luna, lo que le da a Europa el aspecto de un globo ocular venoso. Las misiones al sistema solar exterior en las décadas posteriores han acumulado suficiente información adicional sobre Europa para convertirlo en un objetivo prioritario de investigación en la búsqueda de vida de la NASA.

Lo que hace que esta luna sea tan atractiva es la posibilidad de que posea todos los ingredientes necesarios para la vida. Los científicos tienen evidencia de que uno de estos ingredientes, el agua líquida, está presente debajo de la superficie helada y que a veces puede irrumpir en el espacio en enormes géiseres. Pero nadie ha podido confirmar la presencia de agua en estos penachos midiendo directamente la propia molécula de agua. Ahora, un equipo de investigación internacional dirigido desde el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, ha detectado el vapor de agua por primera vez sobre la superficie de Europa. El equipo midió el vapor mirando a Europa a través de uno de los telescopios más grandes del mundo en Hawai.

Confirmar que hay vapor de agua sobre Europa ayuda a los científicos a comprender mejor el funcionamiento interno de la luna. Por ejemplo, ayuda a apoyar una idea, de la cual los científicos confían, de que hay un océano de agua líquida, posiblemente el doble de grande que el de la Tierra, que se derrama debajo de la capa de hielo de esta luna de kilómetros de espesor. Algunos científicos sospechan que otra fuente de agua para los penachos podría ser depósitos poco profundos de hielo de agua derretida no muy por debajo de la superficie de Europa. También es posible que el fuerte campo de radiación de Júpiter esté quitando partículas de agua de la capa de hielo de Europa, aunque la investigación reciente argumentó en contra de este mecanismo como la fuente del agua observada.

Lea el artículo completo en: El Espectador 

17 de septiembre de 2019

Pioneras de la ciencia (08/08): Maria Mitchell (1818-1889), la primera mujer científica en los EE.UU.


El caso de Maria Mitchell (1 de agosto de 1818 – 28 de junio de 1889) es uno de esos que nos recuerdan las muchas mentes brillantes que la ciencia habrá perdido, por el solo hecho de haber pertenecido a mujeres que carecieron de oportunidades. Mitchell es el contraejemplo: ella sí tuvo la oportunidad y la aprovechó sobradamente. Aunque fue criada en la tradicionalista Nueva Inglaterra, la igualdad entre sexos defendida por su familia le abrió la puerta a los estudios que le depararían una fulgurante carrera en astronomía.

Cuando Maria Mitchell tenía 14 años, los barcos balleneros que partían del puerto de Nantucket, la isla cercana a Massachussetts donde vivía, confiaban en su habilidad para calibrar los instrumentos de navegación que les ayudarían a orientarse durante sus semanas de travesía. La conocían y estaban seguros de su habilidad porque llevaban años viéndola acompañar a su padre, William Mitchell, un hombre instruido y versado en ciencias y astronomía que se dedicó personalmente de la educación de su hija.

Mitchell nació el 1 de agosto de 1818 en una familia cuáquera, una tradición que defiende que chicos y chicas deben ser educados igual, así que ella acudió a la escuela local y recibió una amplia formación de su padre, que incluyó muchos ratos realizando experimentos juntos. Una de sus hermanas contaba que en el salón colgaba de la lámpara una bola de cristal llena de agua que él utilizaba en sus experimentos sobre la polarización de la luz y que hacía que todas las paredes de la estancia estuviesen cubiertas de fragmentos de arco iris.

La astronomía y su estudio era una disciplina muy apreciada en la isla, que vivía de los barcos balleneros que a su vez dependían de los instrumentos astronómicos para orientarse. William Mitchell se encargaba de ajustar esos instrumentos de forma que los barcos siempre supieran dónde estaban cuando pescaban en alta mar, y su hija lo acompañaba. También hacían juntos otros experimentos. Durante un eclipse solar cuando ella tenía 13 años, calculó la longitud a la que se encontraba su casa.
A Mitchell le encantaba leer, aprender y enseñar. A los 16 años empezó a trabajar como asistente de los profesores de su anterior escuela, y a los 18 se convirtió en la primera bibliotecaria del Ateneo de Nantucket.

Era un lugar tranquilo, así que ella aprovechó parte de su tiempo allí para seguir leyendo y aprendiendo. Le interesaban muchas materias: alemán, latín, matemáticas avanzadas y mecánica celeste. Algunas tardes se organizaban en el Ateneo charlas y tertulias a las que acudían mentes progresistas para hablar de todo tipo de temas, y ella también estaba allí, aprendiendo.
Disfrutaba con su tranquilo trabajo, pero un día la casualidad se puso ante ella y todo cambió. Lo hizo en la forma de un cometa inesperado. A Mitchell le gustaba pasar las noches sobre el tejado de la casa de su familia escrutando el cielo y las estrellas con su telescopio. El 1 de octubre de 1847 estaba estudiando un segmento del cielo que ya conocía cuando se encontró en él una mancha blanca que no estaba allí antes. Bajó a contárselo a su padre, que animó a Mitchell a hacer público su descubrimiento.

Ante la negativa de ella, que temía ser menospreciada por ser mujer, William Mitchell escribió a otros astrónomos influyentes para que apoyasen el descubrimiento de su hija. William C. Bond era por entonces el director del Observatorio de Harvard, en Massachussetts, y fue quien habló a los Mitchell de la medalla a la que Maria podía aspirar. Les contó que Frederik VI, rey de Dinamarca, también era muy aficionado a la astronomía, y que había ofrecido una medalla a todo el que descubriese un nuevo cometa. El monarca había fallecido en 1839 pero su sucesor, Christian VIII, continuó otorgando estos premios.

Convencida por su padre y su colega, Mitchell se animó por fin a publicar su descubrimiento, aunque un error de ellos dos al seguir los trámites para optar a la medalla casi la dejan sin ella. Por fin, un año después de haber visto el cometa que sería bautizado con su nombre, la medalla de Maria Mitchell llegó a Nantucket.

Su descubrimiento la hizo famosa, y propició que se convirtiese en la primera mujer que formó parte de la Academia Estadounidense de las Artes y las Ciencias, y fue contratada por el servicio que elaboraba el calendario náutico para seguir y consignar detalladamente los movimientos de Venus que, aunque es un planeta, servía como estrella guía para los barcos. Mucha gente venía a visitarla y quería conocerla, impresionados por la primera mujer estadounidense que había descubierto un cometa.

Gracias a sus ahorros y a un trabajo como acompañante de una chica más joven, pudo viajar por el sur de Estados Unidos y por Europa, donde visitó algunos de los observatorios más avanzados de la época, como el de Cambridge o Roma, y conoció a los astrónomos más importantes del continente, Sir George Ary, el Astrónomo Real que estableció el Meridiano de Greenwich, o el padre Secchi, el Astrónomo del Vaticano.
En 1858 Mitchell estaba de vuelta en Nantucket, y poco después, tras la muerte de su madre, se trasladó con su padre al continente. Continuó trabajando para el servicio náutico hasta que en 1865 fue contratada como profesora por Mathew Vassar para dar clase en el Vassar College, su recién inaugurada escuela para mujeres, por su habilidad científica y por ser un modelo a imitar para otras mujeres jóvenes. Ella encajó enseguida en su rol de profesora y mentora de sus alumnas, a las que animaba a no dejar que el hecho de ser mujeres las desanimase en sus empeños. “Ninguna mujer debería decir ‘Pero solo soy una mujer’. ¿Solo una mujer? ¿Y qué más se puede pedir?”.
Las llevaba a excursiones para observar eclipses y las mantenía despiertas mucho más allá de la hora fijada para estudiar con ellas el cielo y sus componentes. Era muy exigente, pero era también una de las profesoras preferidas por sus estudiantes, a las que trataba como iguales: “Somos mujeres estudiando juntas”.

Volvió a Europa unos años después, en 1873. Primero fue a Rusia, donde descubrió encantada que allí la educación de las mujeres jóvenes estaba mucho más extendida que en Estados Unidos. Allí las chicas a las que conoció hablaban de ciencias, de literatura y de política sin cortarse. En comparación, en EE. UU. el número de chicas con esos conocimientos era mucho más limitado. En el otro lado estaba el Colegio para Chicas de Glasgow, que también visitó en ese viaje, en el que solo se las enseñaba música, danza, dibujo y bordado, lo cual le resultó muy decepcionante. A su vuelta a su país, Mitchell participó en la fundación de la Asociación Americana para el Avance de las Mujeres.
En 1888, Mitchell enfermó del corazón y dejó las clases para trasladarse a la casa de su hermana, ante el disgusto y las súplicas de estudiantes y de la dirección de la escuela, que le pidieron que se quedase viviendo allí, aunque no pudiese seguir dando clase. Ella prefirió marcharse. Su sobrino, arquitecto, le construyó un pequeño observatorio en su nuevo hogar con la esperanza de que se recuperase lo suficiente como para usarlo. No fue así. Maria Mitchell murió el año siguiente.

Mitchell fue una mujer de ideas adelantadas a su tiempo. Un ejemplo curioso: renunció a vestir prendas de algodón como protesta contra la esclavitud. Pero sobre todo, fue una activa defensora de los derechos de las mujeres, impulsando el movimiento sufragista y la participación de las mujeres en la ciencia. Con ocasión de un viaje a Europa, dejó escrita su admiración por la matemática y astrónoma escocesa Mary Somerville, para quien “las horas de devoción al estudio intenso no han sido incompatibles con los deberes de esposa y madre”. Quizás esa fue la espina que se le quedó clavada, ya que Mitchell nunca se casó ni tuvo pareja, un precio que muchas mujeres científicas han debido pagar a cambio de carrera y prestigio.

Fuente: Open Mind

Mujeres con ciencia

Open Mind

15 de agosto de 2019

Mujeres y ciencia 04/08: Mary Somerville (1780-1872), creadora de la palabra "científico"

La historia de la escocesa Mary Fairfax empieza como la de tantas otras mujeres de la sociedad acomodada de su tiempo: bailes y reuniones sociales, un padre que se oponía a sus estudios y un matrimonio con un primo lejano, Samuel Greig, que también se oponía a sus estudios. Pero fue clave en su vida que su marido solo viviera tres años más, lo que le permitió al fin dedicarse a sus estudios. Y llevó sus estudios al punto de ser considerada «la reina de las ciencias del siglo XIX».


Primero llegó la geometría


El único que la comprendía, cuando era aún soltera, era su tío, el Dr. Somerville, quien la alentaba a visitar su biblioteca y a iniciarse en un autodidáctico estudio de latín.

Aunque «la reina de las ciencias» se abrazaba a la lectura y a la pintura sabía que faltaba algo en su vida; pero no lo descubriría hasta una clase de dibujo. Durante la sesión, el profesor había recurrido a la geometría para explicarle la perspectiva. Él no lo sabía, pero le había presentado al gran amor de su vida: las matemáticas.

Somerville estudiaba intensamente todas las noches cuando nadie la veía; y en poco tiempo llegaría a dominar complejos teoremas,astronomía avanzada y física.


Durante ese tiempo el Imperio británico estaba atravesando un renacimiento en el desarrollo científico, tras un gran periodo de estancamiento durante el siglo XVIII, en el que se ejercía fundamentalmente la docencia mas no la investigación.



Mary Somerville, apellido tomado de su segundo marido, fue un espíritu de su época, fue polímata: cultivó las matemáticas, la física y la astronomía. Tradujo al inglés la mecánica celeste de Laplace, quien en una ocasión le dijo que sólo había tres mujeres que entendieran su trabajo: ella, Caroline Herschel y una tal señora Greig; el francés ignoraba que la tercera también era ella. 

Obras de Mary Somerville

En sus obras predomina el deseo de contribuir a la divulgación del pensamiento científico del momento. La importancia de la versión traducida de la obra de Laplace “Mecanique Celeste” bajo el título “Mechanism of the Heavens”, fue el comienzo de una nueva era para sus contemporáneos. “The Connection of the Physichal Sciences” es un profundo ensayo filosófico, con una amplia explicación científica, acerca de los fundamentos de las fuerzas que mueven el universo. Su obra “Physical Geography” se ha utilizado durante años en las aulas inglesas, reconociendo así su calidad, su carácter innovador y su capacidad para explicar los fenómenos naturales y las relaciones entre los seres vivos. Su última obra, “Molecular and Microscopic Science” aborda el mundo microscópico en la búsqueda de explicaciones a la composición de la materia, el fenómeno del calor y los movimientos vibratorios, entre otras cuestiones.


Matemáticas sencillas

En la traducción de «Mécanique Celeste» no solo se limitaría a cambiar de idioma las teorías; sino que además añadiría un preámbulo llamado «A preliminary dissertation on the mechanism of the heavens» (Una disertación preliminar sobre el mecanismo de los cielos), un compendio de desarrollos matemáticos e ideas fundamentales de física imprescindibles para comprender la obra de Laplace. La escritora científica explicaba con mayor sencillez toda una teoría que parecía imposible de entender para las mentes más comunes. 

Nuevo matrimonio
 
En 1804 volvería a casarse con otro primo, el médico William Somerville. Él sentía una profunda admiración por su entusiasmo, por lo que se convertiría en el gran soporte de Mary. De esta manera, el camino profesional de «la reina de las ciencias» estuvo en gran medida respaldado por su esposo; quien la representaría en todos los lugares donde una mujer no era bienvenida. William se hizo socio de la Royal Society -hasta 1945 no aceptaron mujeres- para ser los ojos y los oídos de Mary; en la biblioteca copiaría a mano todos los artículos que a su mujer le resultaban relevantes para sus investigaciones.


Somerville se relacionó con algunos de los principales científicos de su tiempo. Influyó en James Clerk Maxwell y sugirió la existencia de Neptuno, que después John Couch Adams demostraría matemáticamente. Fue tutora de Ada Lovelace, la hija de Lord Byron que trabajó con Charles Babbage en sus primeras máquinas de computación.

El término "científico"

Somerville fue una de las dos primeras mujeres, junto con Caroline Herschel, en ser admitida en la Royal Astronomical Society. Hoy se la recuerda como una de las científicas más grandes de la historia; tal vez la más importante, ya que su trabajo además motivó el término por el que todos sus colegas han sido conocidos desde entonces: fue en una revisión de su obra On the Connexion of the Physical Sciences donde en 1834 William Whewell acuñó el término scientist, científico, para referirse a los que hasta entonces eran “hombres de ciencia” o “filósofos naturales”.

Con información de : Open Mind 

Divulga Mat

ABC Ciencia

Mujeres y ciencia 03/08: Caroline Herschel (1750-1848) la primera mujer que descubrió un cometa

Es muy probable que te suene el apellido Herschel, un apellido históricamente ligado a la astronomía.   



William Herschel es mundialmente conocido porque descubrió el planeta Urano (que en realidad no debería llamrse Urano sino Jorge III, pero esa es otra historia). Su hijo John continuó su trabajo astronómico y cultivó otras ciencias. Pero hubo un tercer miembro de la familia, a menudo injustamente olvidado: Caroline, hermana de William

Y al igual que otras mujeres científicas, Caroline Herschel tuvo que hacer frente a circunstancias muy adversas y a un destino ya escrito. En su caso, el de Cenicienta: debido a una enfermedad que sufrió de niña, su estatura se quedó en un metro treinta. Asumiendo que nunca se casaría, sus padres la criaron para el servicio doméstico. Cuando su padre murió, su hermano William, emigrado desde su Alemania natal a Inglaterra, la invitó a instalarse con él para ocuparse de su casa. Así lo hizo, y de paso aprendió la profesión de su hermano, que por entonces no era la astronomía, sino el canto.

William dedicaba su tiempo libre a fabricar telescopios y observar el firmamento, y con el tiempo Caroline se sumó. Fue la primera mujer en recibir una pensión de la Corona británica como científica, la primera en ver su trabajo publicado por la Royal Society y en descubrir un cometa, además de numerosos grupos de estrellas y nebulosas. Ella y su hermano crearon el primer mapa de nebulosas, ¡llegando a catalogar 2500 nebulosas!

Caroline Herschel, gracias a la pensión que recibía del Rey (aunque era solamente la cuarta parte de la pensión que recibía su hermano) se dedicó a detectar cometas, descubrío ocho cometas en total. Por ello se le conoció como la Cazadora de Cometas.

Y aunque no fue admitida en la Royal Society, ninguna mujer sería aceptada hasta el año 2016, su nombre, en la actualidad, pasará a la posteridad: un cráter en la Luna lleva su nombre.

Un dato curioso: Nunca aprendió a multiplicar, siempre llevaba en el bolsillo una chuleta (un papelito) con las tablas. 

Con información de: Open Mind 

National Geographic

El País (España)

7 de junio de 2019

Sobre las dificultades para tener bebés en Marte



Había un montón de inconvenientes para llegar a Marte en 2007, tal y como recopilé en este post aquel año. ¿Y ahora? También, pero por alguna razón los científicos, tal vez imbuidos del optimismo de Elon Musk, comienzan ya a contemplar todas las posibilidades que se desprenden de la colonización del planeta rojo.

Obviamente, la parte más complicada de sostener a toda una civilización prosperando en Marte es la del remplazo de los humanos demasiado viejos, heridos o incluso fallecidos. En la Tierra eso se soluciona sobradamente mediante la reproducción sexual, Pero ¿y en Marte? ¿Va a resultar fácil la paternidad en nuestro planeta vecino?

Bien, según un nuevo artículo publicado en Futures por Konrad Szocik (filósofo y científico cognitivo de la Universidad Jaguelónica en Polonia) y otros colegas, la reproducción puede ser la parte más difícil de todo el esquema colonizador. Pensad por ejemplo, que es probable que en ausencia de gravedad la fecundación pueda resultar muy dificultosa, de ahí que este mismo año vayan a hacerse pruebas con esperma humano y de toro en la ISS.

Lea el artículo completo en: Mailkenais Blog

4 de junio de 2019

¿Qué pasaría si el núcleo de la Tierra se enfriara?


El núcleo
 
Además del nombre de una película de ciencia ficción lanzada en 2003, el núcleo es la parte más interna de la Tierra. Según estudios sismológicos, se encuentra justo en el centro del planeta y tiene un radio de aproximadamente 3.500 km (representa el 60% de la masa de la Tierra). Consiste principalmente en una aleación de níquel-hierro conocida como NiFe ("Ni" para níquel y "Fe" para hierro). El núcleo también es bastante denso, lo que implica que contine una gran cantidad de otros elementos pesados una cantidad muy pequeña de metales más ligeros, junto con rastros de silicio. La gravedad del núcleo es casi tres veces más fuerte que la gravedad en la superficie del planeta.

También se debe tener en cuenta que, aunque es lo suficientemente caliente por sí solo, su temperatura se ve acentuada por el calor generado por la fricción gravitacional, causado por el movimiento de materiales pesados cerca de la región donde se separan el núcleo y el manto.

¿Qué pasaría si el núcleo se enfría?

Aunque parezca un planteamiento curioso, no querremos que ocurra. El núcleo de nuestro planeta realiza una serie de funciones que son esenciales para mantener la vida en la Tierra. Todas esas funciones vitales serían interrumpidas si el núcleo se enfriara. Si el núcleo se enfriara tendríamos un planeta básicamente muerto. Esto resume bastante bien las consecuencias finales, ¿verdad? pero veamos los efectos específicos que serían causados por un enfriamiento del núcleo de la Tierra.

El enfriamiento del núcleo no solo provocaría una ausencia de energía geotérmica, sino que la oscuridad también caería sobre la Tierra, ya que las empresas de energía de todo el mundo utilizan el calor de la corteza terrestre para calentar el agua, que produce vapor, el vapor acciona las turbinas que generan electricidad a través de un proceso complejo... En otras palabras, un núcleo frío significa una Tierra más oscura.

Aparte de eso, el planeta también sería atacado por una gran cantidad de radiación peligrosa del Sol, ya que el núcleo ayuda a formar la capa protectora atmosférica y magnética alrededor de la superficie del planeta. El hierro en constante cambio en el núcleo forma este poderoso escudo alrededor de la Tierra que nos protege de la dañina radiación cósmica y solar.

En ausencia de ese escudo, habría un ataque brutal de rayos de radiación que pueden causar cáncer y sobrecalentar el planeta. También hay vientos solares que soplan sobre nuestro planeta todo el tiempo, pero son desviados en gran medida por estas fuerzas invisibles; Algunas de estas "ráfagas" de viento solar serían lo suficientemente fuertes como para secar océanos y ríos completos, pero nuestro núcleo caliente ayuda a prevenir que eso pase.

La Tierra acabaría convirtiéndose en un nuevo Marte. 
  

 

7 de mayo de 2019

Universe: el corto que inspiró a Kubrick para su ‘2001: una odisea del espacio’


Voy a hablaros hoy de una joya cinematográfica que apenas dura media hora y que sin embargo nos hace viajar en el tiempo. Se titula “Universe” y es un documental que, tras exhibirse en muchísimas escuelas de Norteamérica, sin duda despertó el interés y la vocación por la astronomía de toda una generación de estudiantes. Realizado con técnicas de animación en 1960, por el National Film Board de Canadá, muestra el aspecto que tendría nuestro sistema solar, e incluso las galaxias, si alguien pudiera realizar un viaje espacial.

Realmente impresiona saber que muchas de las cosas que se relatan en el corto siguen sonando “actuales” a pesar de los casi 60 años transcurridos desde su estreno. Obviamente hay errores, como la insinuación de la presencia estacional de “vegetación” en Marte, o considerar a Plutón un planeta (algo que entonces era) pero ni siquiera estos pequeños detalles, o la cortapisa visual del blanco y negro en que está realizado, le restan un ápice de interés y belleza. Sin duda “Universe” es una obra maestra (casi arqueológica) de la divulgación científica, la cual fue por cierto nominada al Oscar en la categoría “mejor corto documental” al año siguiente.



Lea el artículo completo en: Mailkelnias Blog

23 de abril de 2019

Estudiantes de la UNI ganan en concurso de la NASA con prototipo de vehículo lunar

El equipo integrado por alumnos de la Universidad Nacional de Ingeniería ganó el premio de telemetría y electrónica del Human Exploration Rover Challange, este 14 de abril de 2019.


Un grupo de alumnos de la Universidad Nacional de Ingeniería (UNI) ganó el concurso Human Exploration Rover Challange. Los jóvenes universitarios ganaron el premio de Telemetría y Electrónica otorgado por el American Institute of Aeronautics and Astronautics (AIAA Telemetry/Electronisc Award).

Este concurso anual realizado por la NASA es un “desafío de diseño de ingeniería para involucrar a estudiantes de todo el mundo en la siguiente fase de la exploración del espacio humano”. 


Los estudiantes diseñaron un vehículo de exploración lunar de modo tal que este pueda adaptarse al terreno agreste del satélite. El vehículo o rover cuenta con inteligencia artificial que permite la medición de magnitudes físicas lejanas para la posterior transmisión de datos obtenidos. 

Fue con el apoyo de la fundación Belcorp que los jóvenes pudieron viajar a Estados Unidos para exponer su trabajo. El grupo de la UNI quedó entre los 100 finalistas de los más de 300 competidores a nivel mundial. 
Este es el presente que recibieron los estudiantes por lograr el premio de Telemetría del Human Exploration Rover Challenge de la NASA. | Fuente: RPP Noticias
 Fuente: RPP Noticias y El Comercio (Perú)
 

11 de abril de 2019

¿Qué es un agujero negro?

Un agujero negro es una zona del Universo desde la que nada puede salir y todo lo que se le acerque es absorbido. El día 10 de marzo de 2019 se pudo fotografiar uno por primera vez.


Un agujero negro es uno de los objetos más extraños en el espacio. 

Es un área en el espacio donde la gravedad es tan fuerte que incluso la luz no puede escapar de él. 

La gravedad es la fueza que te atrae al suelo. Intenta saltar, ¿acaso te quedas flotando en el aire? No, vuelves a pisra el suelo, porque te atrae la fuerza de la gravedad.

Ahora imagina que todo el planeta es jalado hacia un aguejero, ¡ahora imagina que todo el Sistema Solar, con el Sol y todos los planetas es jalado hacia un agujero en el espacio! Pues eso es un agujero negro.

Como la luz no puede escapar de este agujero, éste aparece negro. 

La luz puede viajar más rápido que cualquier cosa que conozcamos, a una velocidad de 300,000 kilómetros por segundo.

En un episodio de Los Simpons, Liza intenta domesticar a un mini agujero negro, pero las consecuencias son devastadoras:



Nada, nada puede escapar

Si la luz no puede escapar de un agujero negro, nada más que conozcamos puede. 

Un agujero negro no es realmente un agujero y no está vacío. Está lleno con una gran cantidad de material comprimido en un espacio extremadamente pequeño. Esto es lo que le da a un hoyo negro su gravedad tan fuerte. 

El término "agujero negro" es usado porque estos objetos, dentor del agujero, se observan como un inmenso pozo negro en el espacio, ya que esros objetos no irradian luz. 

Todo depende de la masa

La fuerza de gravedad de un cuerpo depende de su masa. Si la masa de un cuerpo es demasiado grande, su gravedad será tan alta que el cuerpo comenzará a atraer su propia materia. Después de atraerse completamente a sí mismo, continuará succionando todo lo que se le acerque, incluso la luz. En la medida que caiga más materia dentro de un agujero negro, más aumentará su masa y su fuerza de gravedad.

Es un “agujero” porque las cosas pueden caer, pero no salir de él, y negro porque ni siquiera la luz puede escapar.

Y, ¿cómo se forma un agujero negro?

Cuando se extingue una estrella de gran masa puede dar origen a un agujero negro. Las elevadas temperaturas de una estrella activa, provocan su expansión, contrarrestando su intensa fuerza de gravedad. Sin embargo, al enfriarse, la estrella comienza a contraerse. Si tiene una masa pequeña, como nuestro Sol o un poco más grande, reducirá su tamaño hasta convertirse en un cuerpo muy pequeño y muy denso. Pero si posee mucha materia, la fuerza con que se atraerán sus partículas será tan intensa, que se convertirá en un agujero negro.

Esta simulación a computadora realizado por la NASA muestra el nacimiento de un agujero negro.

 

Esta película muestra la formación de un Agujero Negro a partir de una Supernova. Al interior de esta estrella elementos livianos como el hidrógeno y el helio se van uniendo para formar elementos más pesados que terminan en un núcleo de hierro. Debido al agotamiento del combustible de hidrógeno y helio la estrella termina por colapsar en una gigantesca explosión de Supernova, que en algunos casos y debido a la inmensa fuerza gravitatoria del núcleo, se transforma en un Agujero Negro. Estrellas de neutrones también dan origen a Agujeros Negros.

Fuentes:

Pregúntale a un astrónomo

Guiteca

La Prensa (Perú)

10 de abril de 2019

La primera imagen de un agujero negro prueba (una vez más) que Albert Einstein tenía razón

Astrofísicos de todo el mundo dieron a conocer la primera imagen real de un agujero negro de la historia. Con ello, se obtiene la primera prueba directa de su existencia, predicha hace un siglo por Albert Einstein.


Hasta ahora se trataba de uno de los más enigmáticos objetos cósmicos, e incluso el propio físico alemán ponía en duda su existencia pese a que teóricamente existían.

La primera imagen de un agujero negro constituye "la prueba más directa" jamás obtenida de la "existencia" de estos cuerpos celestes, explica el astrónomo Frédéric Gueth, director adjunto del Instituto de Radioastronomía Milimétrica de Europa, que participó en el proyecto. Según la ley de la relatividad general publicada en 1915 por Albert Einstein, que permite explicar su funcionamiento, la atracción gravitacional de estos "monstruos" cósmicos es tal que no se les escapa nada:  

Son objetos que poseen una masa extremadamente importante en un volumen muy pequeño. Como si la Tierra estuviera comprimida en un dedal o el sol únicamente midiera 6 km de diámetro, explicó recientemente a la AFP Guy Perrin, astrónomo del Observatorio de París-PSL.

La fuerza de gravedad que emana del agujero negro es tan fenomenal que no se ha logrado recrear en laboratorio.

Pero sabemos que existen de dos tipos:

Los agujeros negros estelares, que se forman al final del ciclo de vida de una estrella y que son extremadamente pequeños: tratar de observar los más cercanos equivaldría a buscar distinguir una célula humana en la luna.

Los segundos, los agujeros negros supermasivos, se hallan en el centro de las galaxias y su masa está comprendida entre un millón y miles de millones de veces la del sol.

Los agujeros negros empezaron a crearse muy temprano en el universo, junto a las galaxias, por lo que "engordan" desde hace 10.000 millones de años. Pero su formación sigue siendo un misterio.

El agujero negro del que ahora se tiene una imagen, es uno de los más masivos de los que se conocen, con una masa 6.000 millones de veces superior a la del sol. Está situado a 50 millones de años luz de la Tierra, en el centro de la galaxia M87.

 

2 de abril de 2019

La NASA quiere llevar el primer humano a Marte en 2033

Una misión para Marte durará al menos dos años a causa de la distancia, ya que solamente el trayecto de ida dura seis meses, frente a los tres días que hacen falta para ir a la Luna.


El regreso de astronautas estadounidenses a la Luna, anunciado recientemente para 2024, estará destinado a preparar la llegada del primer humano a Marte en 2033, dijo este martes el administrador de la NASA, Jim Bridenstine.

"Queremos aterrizar en Marte en 2033", declaró el jefe de la NASA en una audiencia en el Congreso estadounidense.

"Podemos avanzar en el aterrizaje en Marte avanzando en el aterrizaje en la Luna. La Luna es el banco de pruebas", dijo el exparlamentario republicano nombrado por Donald Trump.
La NASA está con prisas desde que la semana pasada el presidente estadounidense, a través del vicepresidente, Mike Pence, adelantara cuatro años el calendario de regreso a la Luna, de 2028 a 2024, último año de un eventual segundo mandato de Trump.

Muchos expertos y legisladores del Congreso dudan de las capacidades de la NASA para cumplir esta nueva fecha límite por los retrasos en el desarrollo del cohete de las misiones lunares, el Space Launch System o "SLS", construido por Boeing.




Una misión para Marte durará al menos dos años a causa de la distancia, ya que solamente el trayecto de ida dura seis meses, frente a los tres días que hacen falta para ir a la Luna.

La ida y vuelta a Marte solo se puede hacer cuando el planeta rojo está situado en el mismo lado del Sol que la Tierra, aproximadamente cada 26 meses.

En 2017, una ley de financiación de la NASA dispuso el año 2033 como fecha de lanzamiento de la primera misión habitada a Marte, pero la agencia espacial norteamericana hablaba en general de "los años 2030" en sus comunicaciones de los últimos meses.

La agencia espacial quiere aprender a extraer y explotar las toneladas de hielo que existen en el polo sur de la Luna. "El hielo de agua representa aire para respirar, agua para beber, carburante", dijo Bridenstine.

"El objetivo no es solamente llevar humanos a la superficie lunar, sino probar que podemos vivir y trabajar en otro mundo", agregó.

"De acuerdo, ¿y cuánto dinero necesitaremos?", preguntó la presidenta de la comisión de Ciencias de la Cámara de Representantes, Eddie Bernice Johnson.

El jefe de la NASA ha prometido actualizar su solicitud presupuestaria antes del 15 de abril.

Fuente: RPP Noticias (Perú)

1 de abril de 2019

Esto es lo que cuesta y el tiempo que hace falta para hacer un traje de astronauta

¿Quién no ha soñado alguna vez con ser astronauta? Yo desde luego sí. De hecho, creo recordar que uno de mis sueños más recurrentes de pequeño era enfundarme en un traje espacial. Hablando de ellos, ¿sabes cuánto cuesta hacer uno y el tiempo que lleva? Una pista: mucho tiempo y dinero.



Cuando en 1969 Neil Armstrong pisó la Luna, el astronauta llevaba un traje espacial de una empresa estadounidense llamada ILC Dover. Se trata de la misma compañía que ha estado desarrollando trajes desde entonces para los astronautas de la ISS, los llamados EMU (Unidad de Movilidad Extravehicular).

Los comienzos de la compañía fueron curiosos. En 1932, Abram Spanel fundó International Latex Corp, compañía conocida como Playtex que fabricó ropa interior femenina hasta la guerra, cuando se dedicó a la producción de balsas, comedores y otros artículos para el Ejército.

Más tarde, en 1947, la compañía pasó a tener cuatro divisiones, una de las cuales, más tarde conocida como ILC Dover, comenzó a producir trajes de alta presión y cascos para la Fuerza Aérea de Estados Unidos.
 
La experiencia de la compañía diseñando zonas altamente flexibles en trajes presurizados fue una de las razones por las que el gobierno lo contrató en 1965 para desarrollar trajes para el programa espacial. El primero, el AX5L, dio paso a la A7L, el cual Neil Armstrong describió como “resistente, confiable y casi como estar en un peluche”.

Desde el programa Apollo, cada astronauta estadounidense fue al espacio en un traje ILC. La compañía adaptó sus primeros trajes para adaptarse a cada astronauta, en cambio, ahora produce una serie de brazos, piernas y botas reutilizables en materiales como Nomex, Mylar aluminizado, nylon, spandex y teflón que se unen para adaptarse a diferentes tamaños de cuerpo. 

¿Y cuánto tardan en hacer uno de estos trajes actuales? Alrededor de 5.000 horas de trabajo son necesarias para tener un traje acabado. ¿Y el precio? El coste, según la misma compañía, asciende a unos 12 millones de dólares por traje estándar.

Por cierto, ILC lleva varios años desarrollando ese ansiado sueño del hombre, los prototipos Z-1 y Z-2 que algún día servirán para llegar a Marte. 

Tomado de: Gzmodo
google.com, pub-7451761037085740, DIRECT, f08c47fec0942fa0